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Abstract. A new handshake scheme is presented for tight-binding (TB) and molecular dynamics (MD) for
multi-scale simulation of covalent crystals. In the present scheme, when calculating the forces on MD atoms
in the handshake region, the TB atoms in close proximity to the MD atoms are treated as MD atoms. The
scheme is thus seamless for calculation of MD atoms. When determining the electronic states of the TB
subsystem, instead of the four basic atomic orbitals, hybrid orbitals are employed as bases in TB method
and also as representing the action of MD atoms on TB atoms. The present handshaking methodology
has several advantages. Firstly, it avoids determining the physical parameters required by introducing a
new orbital model. Secondly, the “seam” almost decreases by one order of magnitude compared to that of
Silogen model. Thirdly, the whole scheme is stable for dynamic simulation.

PACS. 71.15.Pd Molecular dynamics calculations (Car-Parrinello) and other numerical simulations –
46.50.+a Fracture mechanics, fatigue and cracks

1 Introduction

With the rapid development of material science, the simu-
lation techniques are expected to be capable of capturing
the phenomena occurring at micro-scales. For example,
phenomena involving crack tip propagation in materials
and connection of two materials are all at nano/micro-
order of magnitude in scale. For the simulations of phys-
ical phenomena with microscopic characteristics, the nu-
merical methods based on molecular dynamics (MD) have
to be applied. Various MD simulation methods have been
developed. Their successful applications can be seen from
some reported studies [1–6].

It is well know, however, that for the accurate descrip-
tion of microscopic physical phenomena, quantum me-
chanical theory is more precise than molecular dynam-
ics models. Based on this fact, Abraham et al. [7–9],
Broughton et al. [10], Rudd et al. [11] and Nernstern [12]
recently developed a new multi-scale method. Instead of
molecular dynamics, they introduced quantum tight bind-
ing (TB) approximation to describe the crack propagation
in a very small region close to the crack tip. For the re-
gion far away from the crack tip, the finite element (FE)
technique, based on the continuum approximation, is still
applied to simulate the large-scale elastic field. The MD
model is taken as the bridge between TB and FE. Their
ideal is of great significance for numerical simulations.
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Firstly, the quantum description of atomic bonding at the
crack tip is more accurate than the molecular dynamics
description. Secondly, besides crack problem, the method
can be used to simulate the other properties of materials.
Thirdly, the combination of TB and MD can also serve
as a useful numerical tool for prediciting the behavior of
various nano-materials.

However since different theoretical models are used in
different subsystems, physical information in the hand-
shake of the two subsystems may have a seam. This
seam will directly influence the accuracy of numerical
results. Therefore research for a reasonable handshaking
methodology is one of key consideration for such a mulit-
scale simulation; as said by Broughton et al. [10], “once
the handshakes are made ‘seamless’, the algorithm is not
only efficient, it is also very accurate”. Abraham and his
coworkers [10] discussed in detail handshaking between
TB and MD for the fracture problem of covalent bond
crystal, Si. In their handshaking scheme between TB and
MD, some univalent “silogens” similar to hydrogen atoms
are introduced acting on the outer perimeter of the TB re-
gion. These silogens are constrained to sit at the positions
occupied by the MD atoms adjacent to the TB atoms and
thus play a role of mutual influence between TB and MD
regions. Ogata et al. [13] presented another handshaking
between density function theory and MD in 2002, where
all the termination hydrogen atoms (similar to the above
silogen) are not at the positions occupied by MD atoms.
The positions of the termination hydrogens are chosen to
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Fig. 1. Illustration of MD/TB handshake.

minimize the mean square forces on all atoms in the quan-
tum system. This procedure requires a considerable com-
putational effort for dynamic simulations.

In this paper, a new handshake scheme for TB/MD
multi-scale dynamic simulation is presented for covalent
bond crystals. The paper is organized as follows. In Sec-
tion 2, MD and TB schemes are described briefly. The
difference between the basic atomic state for TB atoms
in the present and existing schemes are highlighted (for
convenience, Abraham et al.’s scheme [10] is called the
silogen-scheme in the present paper). The new handshak-
ing between TB and MD is introduced in Section 3 and in
Section 4 the numerical verification of the present scheme
is discussed. Finally concluding remarks are given in Sec-
tion 5.

2 Brief descriptions on MD and TB schemes

For the convenience of introducing the new handshake
scheme, we separately describe the main concepts behind
the MD and TB dynamic simulations. A more detailed
description can be found in the reported studies [7–12].

Let us consider a system comprising of N atoms ini-
tially at positions {ri|i = 1, ...,N}. Suppose N1 atoms in
the right side of this system to be simulated by the tight
binding approximation and the remainder on the left by
molecular dynamics technique based on empirical poten-
tial (as shown in Fig. 1).

For the MD atoms, the Stillinger-Weber [14] (SW) po-
tential,

VSW =
∑

i<j

V (2) (rij) +
∑

i,(j<k)

V (3) (rij , rik) , (1)

is chosen as their mutual action potential and the force
FMD

i on the ith MD atom is calculated by means of,

FMD
i = −∂VSW

∂ri
, (2)

where rij = |rij| = |rj − ri| and the sums are over all
the MD atoms. The velocity-Verlet algorithm is chosen
as the integrator for Newton’s law of motion as it is a
simply implemented explicit scheme with high accuracy
for a given time step.

For the TB atoms, the total energy is comprised of two
parts as follows

VTB =
Nocc∑

n=1

En +
∑

i<j

Vrep (rij) . (3)

Here En is the energy of nth eigenstate |Ψn〉 under the
one-electron approximation to the first principles; Nocc is
the number of occupied states of electronic system up to
the Fermi-level; Vrep stands for inter-atomic repulsive po-
tential. The energy En is obtained by solving the following
time-independent Schroedinger equation,

H |Ψ〉 = E |Ψ〉 , (4)

where H is the Hamiltonian under the one-electron ap-
proximation. To solve this equation, the electronic wave
function Ψ is expanded into the linear combination of some
basis functions,

|Ψ〉 =
N1∑

i=1

Nα∑

α=1

ciα |ψiα〉 +
L∑

l=1

cl |ψl〉, (5)

where |ψiα〉 stands for the αth atomic orbitals on the ith
TB atom; ψl is the orbital wave function reflecting the
effect of MD atoms on the TB atoms and L is the number
of such wave functions; Ciα and Cl are the coefficient to
be determined; Nα is the number of covalent bonds (or
covalent electrons) of an atom in crystal and changes with
the structure of covalent crystal. For example, Nα is 4 in
the diamond crystals.

Traditionally, the four basic orbitals, s, px, py and pz,
are directly taken as ψiα as done in the reference [10]. In
the present scheme, however, instead of these four basic or-
bitals, the hybrid orbitals are chosen as ψiα in (5) because
they are capable of reflecting the orientation of covalent
bond. For example, if the hybrid orbital is formed by s-
and/or p-electrons, then

|ψiα〉 = αs |si〉 + αx |pix〉 + αy |piy〉 + αz |piz〉 (6)

where (αx, αy, αz) stands for the orientation of hybrid
orbital and α2

s + α2
x + α2

y + α2
z = 1. The method of de-

termining these coefficients can be found in hybrid bond
theory or structure chemistry. As the second term in the
right hand side of equation (5) represents the effect of elec-
trons of MD atoms on the TB atoms. How to choose the
electronic wave function ψl is one of keys for handshaking
between the TB and MD atoms. A detailed discussion will
be presented in the next section.

Substituting equations (5) and (6) into equation (4)
and utilizing the variational principle, we can obtain a set
of algebraic eigenvalue equations for the energy E and the
coefficients in equation (5)

[(
HII HIL

HLI HLL

)
− E

(
SII SIL

SLI SLL

)](
CI

CL

)
= 0 (7)

where (CI, CL) have the form,

(CI)
+ = (c11, c12, c13, c14, c21, · · · · ··)

(CL)+ = (c1, c2, c3, c4, c5, · · · · ··)
}
. (8)
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The subscript ‘I’ here is equal to Nα×N1. In order to more
clearly show the influence of MD atoms on the TB atoms,
Hamitonian matrix H and non-orthogonal matrix S (due
to applying non-orthogonal orbital model) are separately
expressed into four sub-matrices, HII, HIL, HLI, HLL, SII,
SIL, SLI and SLL. The effect of MD atoms on TB atoms
is represented through HIL, HLI, SIL and SLI. Further
discussion of H and S matrices is provided in the appendix.

Applying the eigen-energies En and the correspond-
ing normalized coefficients obtained through solving equa-
tion (7), the force acting on the ith TB atom can be de-
duced by differentiating expression (3).

Fi = −
Nocc∑

n=1

(Cn
I C

n
L )

⎡

⎢⎢⎣

⎛

⎜⎜⎝

∂HII

∂ri

∂HIL

∂ri

∂HLI

∂ri

∂HLL

∂ri

⎞

⎟⎟⎠

−En

⎛

⎜⎜⎝

∂SII

∂ri

∂SIL

∂ri

∂SLI

∂ri

∂SLL

∂ri

⎞

⎟⎟⎠

⎤

⎥⎥⎦

(
Cn

I

Cn
L

)
−

∑

j �=i

∂Vrep (rij)
∂ri

. (9)

After calculating the forces acting on each TB atom, the
classical paths of the atoms can then be determined.

3 Handshaking between TB and MD atoms

In the previous section, a system of atoms under consid-
eration is artificially divided into MD and TB subsystems
as shown in Figure 1 and the different physical models are
applied to the subsystems. This will give rise to a “seam”
of physical quantities (such as forces acting on atoms) ap-
pearing at handshake atoms of the two subsystems. To
ensure the availability of TB-MD multi-scale simulation,
the “seam” of a numerical scheme must be sufficiently
small.

First, let’s discuss the simulation of MD atoms. The
action radius of the SW potential function is around
1.6 times the length of a bond, an MD atom will not
experience any force from particles outside of this ra-
dius. Hence, when the handshake region (see Fig. 1) is
chosen to be suitably wide, the MD1 atoms (MD atoms
outside the handshake region) will not be acted upon
by the TB atoms. The MD2 atoms will be affected by
the TB2 atoms in the handshaking zone. However, if the
SW potential, rather than tight binding approximation,
is used to calculate the action of the TB2 atoms on the
MD2 atoms, the environment of MD1 and MD2 atoms will
be the same as an identical potential function is applied
to all of the MD atoms.

It can be seen from the above discussion that for the
MD subsystem it does not need to distinguish MD1 atoms
from MD2 atoms. The identical formulas (1) and (2)
can be applied to compute the forces acting on the all
MD atoms as if the whole system was not divided in the
MD and TB subsystems. The inconsistency of a dynamic
description of the MD atoms can be avoided by eliminat-
ing the artificial subdivision of the system into TB and

MD regions. Therefore the present computational scheme
for the MD subsystem is almost seamless.

Now, we turn to the TB subsystem. Equation (9) shows
that force acting on a TB atom originates from two parts,
the inter-atomic repulsive potential and summation over
all occupied one-electron energy-states. It can be seen
from equation (3) that the repulsive potential in tight
binding approximation is also only dependent on relative
positions among atoms and the cut-off radius is small. The
repulsive potential and molecular potential are thus sim-
ilar in the type of functions. Hence the above treatment
on MD atoms can be used directly to calculate the re-
pulsive force. Specifically, when computing the repulsive
forces exerted on TB2 atoms inside the handshake region,
the MD2 atoms are regarded as the ‘TB’ atoms as if the
whole system consists of the TB atoms, although the mo-
tion of MD2 atoms is determined by molecular dynamics
model (or SW potential). Clearly, the repulsive force ob-
tained by such computation should be seamless from TB1
to TB2 atoms.

The other part of force originating from summating
energy of all one-electron states is the major part of force
on a TB atom. The discussion from equations (3) to (9)
has shown that this part of force depends strongly on the
chosen atomic orbital ψl reflecting the effect of MD atoms
on the TB atoms. The key of decreasing the ‘seam’ be-
tween the TB and the MD atoms is thus to reasonably
choose and treat the atomic orbital ψl.

Traditionally, all ψl in equation (5) are taken as one
type, i.e., s-like orbital similar to hydrogen. For instance,
“silogen” model introduced in references [7–12] belongs to
this type. These researchers brought forward 4 or 5 re-
quirements to determine the physical parameters of the
silogen model. The purpose of these requirements is to
maintain as much of the bond structure properties of co-
valent crystal as possible in the connection of the MD and
TB atoms. It has been mentioned in the previous section
that for most covalent crystals, the hybrid atomic orbitals
better reflect the bonding structure among atoms. Hence
in the present scheme, instead of the isotropic s-like or-
bital, the hybrid atomic orbital itself is chosen as |ψl〉 in
equation (5). In other words, like the previous procedures
on the SW potential and the repulsive potential, those
MD2 atoms close to the TB2 atoms are first regarded as
TB atoms (for the convenience of discussion below, they
are called MDT atoms). Thus each MDT atom has the
same hybrid orbitals as the TB atoms, as shown in ex-
pression (6). Some of the hybrid orbitals are then selected
as |ψl〉 in equation (5) and is moved with the correspond-
ing MDT atom. It should be noted that the chosen hybrid
orbitals may change form MDT atom to MDT atom.

It is well known that a TB atom may have several hy-
brid orbitals. The orientation of orbitals determines which
hybrid orbital is most suitable for a given MDT. If the
orientation of a hybrid orbital is towards the TB subsys-
tem (region), this hybrid orbital must be selected for the
MDT atom. For instance, a silicon atom in a diamond
structure has 4 hybrid orbitals: |ψi1〉, |ψi2〉, |ψi3〉 and |ψi4〉,
and each one has its special orientation in crystal. If the
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Fig. 2. A part of simulated silicon atoms as viewed from
z-direction.

orientations of orbitals |ψi1〉 and |ψi3〉 of a MDT atom
point to the TB subsystem, both of these hybrid orbitals
are then chosen as |ψl〉.

The orbital |ψl〉 chosen at present is in the same type
with |ψiα〉 of the internal TB atoms. It can thus interact
with any TB2 atom only when it is sufficiently close to
the center of |ψl〉. When calculating the values of matrix
elements in equation (7), it is not necessary to make any
special procedure on the matrix elements involving |ψl〉.

The above discussion has detailed the main advan-
tages of the new handshkaing regime. Firstly, it avoids
the trouble of computing the physical parameters needed
in any hydrogen-like model due to the present |ψl〉 be-
ing constructed by linear superposition of the four basic
atomic orbitals. Thus the various physical parameters re-
quired by the hybrid orbital can be obtained directly from
the basic orbitals without requiring any further numeri-
cal calculation. For example, the orbital energy of |ψl〉 is
α2

sEs + (α2
x + α2

y +α2
z)Ep, where Es and Ep are the ener-

gies of s- and p-orbitals, respectively. Secondly, each |ψl〉
is not limited to act on only a given TB atom. When the
system is at a state of equilibrium, |ψl〉 naturally acts on
only one TB atom located at the oriented axis of |ψl〉 as
the two-center integral values between it and the orbitals
of other TB atom are zero. However, when the system
is at dynamic state, it is reasonable to assume that the
two-center integral values between |ψl〉 and the orbitals of
more TB atoms are non-zero. Third, the present |ψl〉 is of
the same type as ψiα for the pure TB atoms. Thus, the
TB atoms within the handshaking zone have an almost
consistent interaction with the pure TB atoms, resulting
in a narrow “seam”. The numerical verification of this
procedure will be given in the next section. Finally, the
present ψl is a more realistic representation of the interac-
tion between the MD and the TB atoms. This is because
the hybrid bond itself can be viewed as the connecting
bond between two atoms in the covalent crystal.

4 Numerical verification and discussion

For verification and comparison, the present and the exist-
ing handshake schemes are applied to compute the forces
acting on every atom in silicon slab with diamond struc-
ture. Figure 2 shows a part of the simulated silicon atoms
as viewed from the z-direction normal to the plane. The

red region stands for TB silicon atoms and the green re-
gion represents MD silicon atoms. Outside the figure are
all the MD atoms. For the MD atoms, the SW potential
is used and for the TB atoms the NO-TB model provided
by Bernsterin and Kaxiras [15] is applied. In the present
computation, a periodic boundary condition is applied in
the z-direction and the period is the length of two crystal
lattices. To decrease the cut-off error, the double precision
computation is used.

Figure 3 shows the distribution of inter-atomic forces
along the atoms in a primary cell layer in the z-direction.
These atoms are assumed to locate at ideal crystal lat-
tices under the zero temperature. For the convenience
of observing and comparing the forces, the atoms inside
the layer are drawn in a horizontal plane although they
have different z-coordinates. It should be noted that all
quantities are dimensionless. The characteristic parame-
ters, which are used to make variables dimensionless, are
the energy of the s-electron, the bond length at zero tem-
perature and the atomic mass.

It is well known that the when atoms are at equilibrium
positions, the total force exerted on each atom is zero. Fig-
ure 3 exhibits clearly that the forces on the MD atoms and
the TB atoms outside handshake region are indeed almost
zero, but the forces on the TB2 atoms inside the region
are not. This indicates that the two types of handshak-
ing will all give rise to error (or seam) of the action force
on TB2 atoms. It can be observed from this figure that
the errors of the two handshake schemes are not of the
same order of magnitude. In Figures 3a-(1, 2), the maxi-
mum force along the TB atoms is about 0.1 while in Fig-
ure 3b-(1, 2), the maximum value is about 0.018. It implies
that the present scheme reduces the error by 80% relative
to the old scheme. By comparison with Figures 3a-(1, 2),
Figure 3(a, 3) shows that the error for the z-component
of force is also relatively small. This may be due to the
application of periodic condition in the z-direction. But it
can also be seen from Figure 3(b, 3) that the error of the
present scheme is smaller in this direction.

Besides the magnitude of error in ideal crystal state,
another criterion of assessing a handshaking scheme is the
stability of the scheme. If the error decreases as time pro-
gresses, the scheme is stable and usable. This is very im-
portant for dynamic simulation. For this purpose, the case
mentioned above without any external force action is dy-
namically simulated. Dimensionless time step taken here
is ∆t = 0.01.

For the present scheme, two things are found from the
numerical simulation. First, the seam along TB bound-
ary atoms gradually becomes smaller and smaller as time
advances, and ultimately disappears. This fact can be
seen in Figure 4. Figure 4a shows that there is a dis-
tributed force (seam) along the TB boundary atoms at
t = 0. After undergoing 3000 time steps, the seam can
no longer be observed in Figure 4b. Instead, there is a
very small force on every MD and TB atom. Second, all
the MD and the TB atoms vibrate with very small am-
plitudes after 500 time steps. Figure 4b implies that al-
most all atoms are away from their equilibrium positions.
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Fig. 3. Comparison of inter-atomic forces computed by two handshakes: (a) old scheme, (b) present scheme.

Fig. 4. Change of force-seam from t = 0 to 3000∆t.
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Fig. 5. Evolution of crack tip in Si material with diamond structure (black circles — MD atoms, red solid circles — TB atoms).

Fig. 6. The configuration of crack tip and the force on atoms at the instant when the crack tip begins to propagate.

But the departure is indeed very small since it is found
that the atomic positions are almost in the same with
Figure 2. From the viewpoint of mechanics, the “seam” is
like a type of initially disturbing force at the TB boundary.
This disturbance tends to diffuse to every atom in MD and
TB under the inter-atomic interaction, and causes them
apart from their original positions. Without energy loss,
these atoms vibrate around their equilibrium positions un-
der the action of the atomic potential. These results clearly
show that the numerical results are reasonable and the
present scheme is stable and valid for both static and dy-
namic simulations.

To further verify the availability of dynamic simu-
lation, the evolution of a crack tip in a Si slab (dia-
mond structure) is simulated using the present multi-scale
scheme under the condition of zero external force. Initially,
the shape of crack is imposed as a rectangular cylinder.
Figure 5a shows a part of the crack close to the right
tip on the top view. It is found from the pure MD sim-
ulation that although all the atoms flutter around ideal
lattice positions, the amplitude is too small in relation to
the lattice spacing. The plots at different instants are al-
most the same with Figure 5a. In the application of the
present multi-scale scheme, atoms around the tip are taken
as TB atoms. The numerical result shows that the atoms
near the crack tip move with time. Figure 5b shows the

atomic positions at t = 500 time step and red solid circles
represent the TB atoms. After that time, all the atoms
begin vibrating around the positions shown in Figure 5b.
It can be seen from the results obtained by two methods
that for the atoms around a crack tip the quantum tight
binding approximation is more reasonable and valid than
the SW molecular dynamic approximation.

Based on the configuration shown in Figure 5b, a kind
of tension along y-direction with the speed of 0.055 is sim-
ulated using the present scheme. Figure 6 gives the con-
figuration of crack tip and y-component of force on atoms
near the tip at the instant of t = 8000∆t. Figure 6a shows
that the tip begins to propagate and the propagation may
not be straight. It can be seen from the force shown in
Figure 6b that the force on the atoms forming the crack
tip is much larger than the force on other atoms. The
seam (force) due to the handshaking can not be observed
clearly. This indicates that the influence of the present
seam on dynamic simulation is small.

5 Concluding remarks

In this paper, a new handshake scheme is presented for
a tight-binding/molecular-dynamics multi-scale simula-
tion of covalent crystals. In the present scheme, when
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calculating the forces of MD atoms in the handshake re-
gion, the adjacent TB atoms are treated as ‘MD’ atoms.
The computation of the whole MD subsystem is thus
seamless. The same procedure is also used to calculate
the repulsive force of TB atoms. To determine the elec-
tronic states of TB subsystem, hybrid orbitals are taken
as basic atomic orbitals no matter whether the orbital
belongs to the TB atom or the MD atom in the hand-
shake region. The present handshaking avoids computing
the physical parameters encountered due to introducing
a new orbital model. Although there is still a small seam
for the TB atoms in the handshake region, its magnitude
decreases by around one order of magnitude compared to
the old scheme. Dynamic simulation shows that the evo-
lution of structure is reasonable and the present scheme is
stable.

Appendix A: the present H and S matrices

In Section 2, a rough discussion has been made for
Hamiltonian and non-orthogonality integrals. For the con-
venience of understanding and computing, a more detailed
discussion is now presented.

For the sake of simplicity in description, we introduce
a symbol

Π+ = �(|ψ11〉 , |ψ12〉 , · · · , |ψN1Nα〉),
× (|ψ1〉 , |ψ2〉 , · · · , |ψL〉)�

=
[
Π+(I), Π+(L)

]
, (A.1)

as an ensemble vector of all hybrid orbitals in equation (5),
where superscript “+” denotes transposition. After apply-
ing the variational principle to equations (4) and (5), the
energy E in (4) and coefficients in (5) satisfy,

[
Π (I)HΠ+ (I) , Π (I)HΠ+ (L)
Π (L)HΠ+ (I) , Π (L)HΠ+ (L)

]
=

E
[
Π (I)Π+ (I) , Π (I)Π+ (L)
Π (L)Π+ (I) , Π (L)Π+ (L)

] [
CI

CL

]
. (A.2)

By comparison with equation (7), we have,

HII = Π (I)HΠ+ (I) = {〈ψiα|H |ψjβ〉}
HIL = Π (I)HΠ+ (L) = {〈ψiα|H |ψl〉}
HLI = Π (L)HΠ+ (I) = {〈ψl|H |ψjβ〉}
HLL = Π (L)HΠ+ (L) = {〈ψl|H |ψl〉} , (A.3)

and

SII = Π(I)Π+(I) = {〈ψiα|ψjβ〉}
SIL = Π (I)Π+ (L) = {〈ψiα|ψl〉}
SLI = Π (L)Π+ (I) = {〈ψl|ψjβ〉}
SLL = Π (L)Π+ (L) = {〈ψl|ψl〉} . (A.4)

It has been pointed out in Sections 2 and 3 that both |ψiα〉

and |ψl〉 are taken as the hybrid orbitals given by equa-
tion (6). Since the hybrid orbital is a linear superposition
of four atomic orbitals, any matrix element in (A.3) is a
linear superposition of the following expressions.

〈si|H |sj〉 , 〈si|H |px,j〉 , 〈px,i|H |px,j〉 ,
〈px,i|H |py,j〉 , 〈px,i|H |pz,j〉 . (A.5)

Similarly, any matrix element in (A.4) is a linear super-
position of the following expressions,

〈si | sj〉 , 〈si | px,j〉 , 〈px,i | px,j〉 , 〈px,i | py,j〉 , 〈px,i | pz,j〉 .
(A.6)

When i = j, the values of expressions in (A.5) and (A.6)
can be obtained from text book.

〈si|H |si〉 = Es, 〈px,i|H |px,i〉 = Ep

〈si|H |px,i〉 = 〈px,i|H |py,i〉 = 〈px,i|H |px,i〉 = 0

〈si | si〉 = 〈px,i | px,i〉 = 1
〈si | px,i〉 = 〈px,i | py,i〉 = 〈px,i | pz,i〉 = 0.

When i �= j, the expressions in (A.5) and (A.6) deal with
the hopping integrals of two atomic orbitals which belong
to two different atoms. According to the non-orthogonal
tight binding model based on the two-center integral ap-
proximation [15], if the two atoms are not neighbors, the
values of these expressions are zero. If the two atoms are
neighbors, the values of expressions (A.5) are fully de-
termined by four independent integrals, V (ssσ), V (spσ),
V (ppσ) and V (ppπ), while the values of expressions (A.6)
can be determined by the extended Hückel theory. The
more detail discussion can be found in references [15,16]
for the non-orthogonal tight binding model based on the
two-center integral approximation.

At present, 〈ψiα|H |ψjβ〉 is taken as an example to
show how to calculate the matrix elements. For the case
of i = j, it is easy to obtain

〈ψiα|H |ψjβ〉 = [αsβsEs + (αxβx + αyβy + αzβz)Ep] δαβ

(A.7)
〈
ψiα

∣∣ ψiβ

〉
= δαβ. (A.8)

For the case of i �= j, the key is to find 〈ψiα|H |ψjβ〉⊥
corresponding to orthogonal tight binding model. From
the reference [16] (pp. 145–149), it can be derived that

〈ψiα(ri)|H |ψjβ(rj)〉⊥ = αsβsV (ssσ) + (αxβx + αyβy

+αzβz)V (ppπ) + [αs (βxlx + βyly + βzlz)
−βs (αxlx + αyly + αzlz)]V (spσ) + (αxlx

+αyly + αzlz) (βxlx + βyly + βzlz) [V (ppσ) − V (ppπ)]
(A.9)

where (lx, ly, lz) = rj − ri)/|rj − ri|.
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